Intracellular degradation of microspheres based on cross-linked dextran hydrogels or amphiphilic block copolymers: A comparative Raman microscopy study
نویسندگان
چکیده
Micro- and nanospheres composed of biodegradable polymers show promise as versatile devices for the controlled delivery of biopharmaceuticals. Whereas important properties such as drug release profiles, biocompatibility, and (bio)degradability have been determined for many types of biodegradable particles, information about particle degradation inside phagocytic cells is usually lacking. Here, we report the use of confocal Raman microscopy to obtain chemical information about cross-linked dextran hydrogel microspheres and amphiphilic poly(ethylene glycol)-terephthalate/poly(butylene terephthalate) (PEGT/PBT) microspheres inside RAW 264.7 macrophage phagosomes. Using quantitative Raman microspectroscopy, we show that the dextran concentration inside phagocytosed dextran microspheres decreases with cell incubation time. In contrast to dextran microspheres, we did not observe PEGT/PBT microsphere degradation after 1 week of internalization by macrophages, confirming previous studies showing that dextran microsphere degradation proceeds faster than PEGT/PBT degradation. Raman microscopy further showed the conversion of macrophages to lipid-laden foam cells upon prolonged incubation with both types of microspheres, suggesting that a cellular inflammatory response is induced by these biomaterials in cell culture. Our results exemplify the power of Raman microscopy to characterize microsphere degradation in cells and offer exciting prospects for this technique as a noninvasive, label-free optical tool in biomaterials histology and tissue engineering.
منابع مشابه
Mucosal Adjuvant Potential of Quillaja saponins and Cross-linked Dextran Microspheres, Co-administered with Liposomes Encapsulated with Tetanus Toxoid
Intranasal vaccination is particularly a striking route for mucosal immunization, due to the ease of administration and the induction of both mucosal and humoral immunity. However, soluble antigens (Ag) are not sufficiently taken up after the nasal administration and need to be co-administered with adjuvants, penetration enhancers or encapsulated in particles. So, in this study, tetanus toxoid ...
متن کاملMucosal Adjuvant Potential of Quillaja saponins and Cross-linked Dextran Microspheres, Co-administered with Liposomes Encapsulated with Tetanus Toxoid
Intranasal vaccination is particularly a striking route for mucosal immunization, due to the ease of administration and the induction of both mucosal and humoral immunity. However, soluble antigens (Ag) are not sufficiently taken up after the nasal administration and need to be co-administered with adjuvants, penetration enhancers or encapsulated in particles. So, in this study, tetanus toxoid ...
متن کاملThe Mucosal Adjuvant Potential of Cross-Linked Dextran Microspheres as Dry Powder
Objective(s) The immunoadjuvant potential of cross-linked dextran microspheres (CDM) as absorption enhancer and Quillaja saponins (QS) as immunomodulator adjuvant was evaluated. Materials and Methods CDM loaded or tetanus-mixed toxoid (TT) or Quillaja saponin (QS) were nasally administered to rabbits in dry powder form, three times in 2 weeks interval and serum IgG and nasal lavage sIgA tite...
متن کاملFluorogenic 1,3-dipolar cycloaddition within the hydrophobic core of a shell cross-linked nanoparticle.
Using either nitroxide mediated polymerization (NMP) or reversible addition fragmentation transfer (RAFT) techniques, novel block copolymers that present terminal acetylenes, in the side chain of the styrenic block, were obtained with narrow polydispersities and targeted molecular weights. For the conversion of these acetylene-functionalized polymers to amphiphilic block copolymers, RAFT techni...
متن کاملUse of Polysaccharide Hydrogels in Drug Delivery and Tissue Engineering
Present review article aims to explain use of injectable hydrogels and microspheres derived from natural polysaccharides as drug delivery systems and cell scaffolds. Polysaccharides isolated from natural sources are proved much better than synthetic polymers for making single and composite hydrogels. This paper emphasizes recent developments occurred in use of amphiphilic polysaccharides for bi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International Journal of Nanomedicine
دوره 2 شماره
صفحات -
تاریخ انتشار 2007